Ethnoracial Identity and Cognitive Impairment: A Community Study

Isabella Wood, MPH¹, Ruopu Song, MS¹, Yingjin Zhang, BS², Erin Jacobsen, MS¹, Tiffany Hughes, PhD, MPH, MBA³, Chung-Chou H. Chang, PhD^{2,4}, Mary Ganguli, MD, MPH^{1,5,6}

¹Department of Psychiatry, University of Pittsburgh School of Medicine; ²Department of Biostatistics, University of Pittsburgh School of Public Health; ³Master of Public Health Program, Midwestern University College of Graduate Studies; ⁴Department of Medicine, University of Pittsburgh School of Medicine; ⁵Department of Neurology, University of Pittsburgh School of Public Health

Medicine; ⁶Department of Epidemiology, University of Pittsburgh School of Public Health

BACKGROUND

Cognitive impairment and dementia contribute to health inequity among older adults – Black Americans have a higher risk of cognitive impairment compared to non-Hispanic White Americans^{1,2}. Identifying potentially modifiable risk factors associated with mild cognitive impairment (MCI) in different ethnoracial groups could reduce MCI burden and health inequity in the population.

METHODS

Two community-based studies, the Monongahela-Youghiogheny Healthy Aging Team (MYHAT) and the 15104 Seniors Project (SP15104), recruited adults aged 65+ years from a group of small towns of lower socioeconomic status in Allegheny County.

Baseline assessments:

- **Demographics**: age, sex, self-identified race, educational attainment, vocabulary level, health literacy
- Physical health: self-reported diabetes, stroke, TIA/mini-stroke; blood pressure; Body Mass Index (BMI)
- Lifestyle: physical inactivity; tobacco and alcohol use
- Sleep patterns
- Sensory function: visual acuity and hearing
- Mental health: depression and anxiety symptoms
- Social connectedness: social isolation and loneliness
- APOE-ε4 genotype determined by blood or saliva samples

Outcome:

• Mild cognitive impairment based on a 0.5 Clinical Dementia Rating (CDR®) score

Goal:

 To investigate associations among selfidentified race, modifiable risk factors, and mild cognitive impairment

RESULTS

Total of 2,845 participants:

- 90.5% White, 9.5% Black
- Median age of 74 years
- Majority women in Black (68.5%) and White (59.5%) participant groups
- Black participants more likely than White participants to have less than a high school education (15.6% v. 9.8%)

Black participants had significantly higher proportions than White participants for the following exposures:

- Diabetes & stroke
- High diastolic blood pressure
- Overweight/obesity (BMI > 25)
- Smoking (lifetime and current/past year)
- Sleep disturbances
- Vision loss
- Mild and moderate/severe depressive symptoms
- Loneliness
- APOE-ε4 carrier status

Association of self-identified race and MCI (adjusting for age, sex, and education)

	OR	95% CI	<i>P</i> -value
Black v. White (ref)	1.53	1.13-2.06	0.005

The following risk factors were **significantly associated with higher odds of MCI** after adjusting for age, sex, education, and race:

- Diabetes, stroke & TIA
- Physical inactivity
- Lifetime smoking
- Sleep disturbances
- Vision & hearing loss
- Mild and moderate/severe depressive symptoms
- Moderate/severe anxiety symptoms
- Social isolation & loneliness

The exposure-MCI relationships did not differ significantly between Black and White participants.

Exposure-MCI associations(adjusted for age, sex, education, and race)

(adjusted for age, sex, education, and race)			
	OR	95% CI	P-
	OK	9370 CI	value
Vocabulary level	0.983	0.975-0.991	<0.001
Health literacy	0.298	0.179-0.503	<0.001
Diabetes	1.298	1.052-1.597	0.025
Stroke	4.206	2.835-6.269	<0.001
ΓIA/mini-stroke	2.099	1.578-2.781	<0.001
High systolic BP	1.083	0.880-1.329	0.557
High diastolic BP	1.193	0.679-2.008	0.600
Jnderweight	0.805	0.308-1.866	0.677
Overweight	0.824	0.673-1.013	0.091
Obesity (BMI≥30)	0.927	0.757-1.134	0.557
Physical inactivity	1.310	1.050-1.629	0.026
_ifetime smoking	1.310	1.085-1.582	0.010
ifetime alcohol	1.077	0.816-1.435	0.673
> 30 mins to fall	1 420	1 100 1 707	0.001
asleep	1.420	1.180-1.707	0.001
Difficulty falling	1.343	1.119-1.612	0.004
pack to sleep	1.5 15	1.113 1.012	0.001
Early morning	1.542	1.274-1.864	<0.001
waking			
Falling asleep during the day	1.363	1.130-1.642	0.003
Jnilateral vision			
OSS	1.219	0.960-1.544	0.138
Bilateral vision loss	1.511	1.219-1.872	0.001
Jnilateral hearing	1 202	1 071 1 777	0.022
OSS	1.383	1.071-1.777	0.023
Bilateral hearing	1.518	1.064-2.146	0.031
OSS			
Mild depression	1.580	1.277-1.951	<0.001
Symptoms Moderate/severe			
depression	3.230	2.453-4.248	<0.001
symptoms	3.230	2.133 1.213	10.001
Moderate/severe			
anxiety symptoms	1.624	1.167-2.262	0.010
Social isolation	1.033	1.024-1.042	<0.001
oneliness	1.023	1.016-1.030	<0.001
4 <i>POE</i> -ε4 carrier	1.210	0.957-1.523	0.141
	•		

CONCLUSIONS

- 53% higher odds of MCI among Black participants compared to White participants, consistent with other findings¹
- None of the exposures had significantly different relationships with MCI among Black and White study participants, implying that Black and White participants have the same or similar risk factors for MCI

Potentially modifiable risk factors are associated with 1 in 3 cases of Alzheimer's disease and related dementias¹. They could be key to delaying or preventing cognitive decline and to guiding public health programs, which have the potential to reduce health inequities in cognitive impairment and dementia.

REFERENCES

- 1. Nianogo, R. A., Rosenwohl-Mack, A., Yaffe, K., Carrasco, A., Hoffmann, C. M., & Barnes, D. E. (2022). Risk Factors Associated With Alzheimer Disease and Related Dementias by Sex and Race and Ethnicity in the US. JAMA neurology, 79(6), 584–591. https://doi.org/10.1001/jamaneurol.2022.0976
- 2. Wright CB, DeRosa JT, Moon MP, et al. Race/Ethnic Disparities in Mild Cognitive Impairment and Dementia: The Northern Manhattan Study. J Alzheimers Dis. 2021;80(3):1129-1138. doi:10.3233/JAD-201370

